Bayesian ultrahigh dimensional variable selection for mixed-type multivariate responses and Bayesian regression models for spatiotemporal data

Hsin-Hsiung Bill Huang¹

¹Department of Statistics and Data Science, University of Central Florida, U.S.A.

Abstract

Inspired by our investigation on spatiotemporal data analysis for the NSF ATD challenges, we've investigated Bayesian clustering, variable selection for mixed-type multivariate responses and Gaussian process priors for spatiotemporal data. The proposed Bayesian approaches effectively and efficiently fit high-dimensional data with spatial and temporal features. We further propose a two-stage Gibbs sampler which leads a consistent estimator with a much faster posterior contraction rate than a onestep Gibbs sampler. For Bayesian ultrahigh dimensional variable selection, we have developed Bayesian sparse multivariate regression for mixed responses (BS-MRMR) with shrinkage priors model for mixed-type response generalized linear models. We consider a latent multivariate linear regression model associated with the observable mixed-type response vector through its link function. Under our proposed BS-MRMR model, multiple responses belonging to the exponential family are simultaneously modeled and mixed-type responses are allowed. We show that the MBSP-GLM model achieves posterior consistency and quantifies the posterior contraction rate. Additionally, we incorporate Gaussian processes into zero-inflated negative binomial regression. To conquer the computation bottleneck that GPs may suffer when the sample size is large, we adopt the nearest-neighbor GP approach that approximates the covariance matrix using local experts. We provide simulation studies and real-world gene data examples.